NevadaNano and University of Utah Robotics Center Successfully Complete First Demonstration of Autonomous Aerial Chemical Detection System

3D Graph of Gas Concentration Captured by the MPS Detector on the Autonomous Aerial Vehicle

MPS gas detection technology is ideally suited for an aerial application.

NevadaNano today announced that the U.S. Army has awarded the company and the University of Utah’s DARC Lab the next round of funding for the “Autonomous Broad Spectrum Environmental Sentinels” Small Business Technology Transfer (STTR) program, started in 2014. The new funding was awarded after the partners successfully demonstrated an autonomous aerial robot with onboard chemical sensing.

For the demonstration in June, NevadaNano redesigned their Molecular Property SpectrometerTM (MPS) system to sense multiple chemicals in a small, 110-gram package. The University of Utah developed an advanced quadcopter aerial robot with up to 40-minute flight times. The robot includes LIDAR object sensing for collision avoidance, precision GPS with programmable waypoints for autonomous flight through a course at programmed altitudes, and auto take-off and auto landing capabilities. In the current project phase, the team demonstrated the aerial system flying to a suspected chemical plume, measuring the presence of hazardous gases and automatically mapping the gas plume in an interactive map on a wirelessly connected ground computer.

Ben Rogers, Principal Engineer at NevadaNano said, “MPS gas detection technology is ideally suited for an aerial application. It delivers sensitive detection of multiple gases in a small, low-power package that is easily mounted on a drone with little impact on flight endurance. MPS technology is designed to be extendible and we will continue to expand the library of gases detected, opening up exciting new applications.”

Kam K. Leang, Associate Professor of mechanical engineering and director of the Utah DARC Lab, said, “Having the opportunity to develop such a unique system that can autonomously sense and analyze dangerous gases is exciting. The robot is lightweight, compact, and easily deployed for applications in emergency response and environmental monitoring where keeping humans out of harm’s way is a top priority. We are looking forward to adding more features, developing swarming capabilities, and performing live…

Read the full article from the Source…

Leave a Reply

Your email address will not be published. Required fields are marked *