New ultrafast method for determining antibiotic resistance

Klebsiella pneumoniae growing in the microfluidic chip imaged in phase contrast. The bacteria are 0.003mm long and divide every 30 min. Credit: Özden Baltekina, et al

Researchers at Uppsala University have developed a new method for very rapidly determining whether infection-causing bacteria are resistant or susceptible to antibiotics. The findings have now been published in the U.S. journal Proceedings of the National Academy of Sciences (PNAS).


Antibiotic resistance is a growing medical problem that threatens human health globally. One important contributory factor in the development of resistance is the incorrect use of for treatment. Researchers therefore seek reliable methods to quickly and easily identify bacterial resistance patterns, known as antibiotic susceptibility testing (AST), and provide early treatment, i.e. right from the doctor’s appointment. This has been inhibited by the current time-consuming tests. Now, researchers at Uppsala have, for the first time, developed an antibiotic resistance test that is fast enough to inform antibiotic choice in the doctor’s office. The test is primarily intended for —a condition that, globally, affects approximately 100 million women a year and accounts for 25 per cent of antibiotic use in Sweden.

“We’ve developed a new that allows determination of bacterial resistance patterns in urinary tract infections in 10 to 30 minutes. By comparison, the resistance determination currently in use requires one to two days. The rapid test is based on a new plastic microfluidic chip where the bacteria are trapped and methods for analysing bacterial growth at single-cell level,” says PhD student Özden Baltekin, who performed most of the experimental work.

The video will load shortly.

A movie of Klebsiella pneumoniae growing in the microfluidic chip imaged in phase contrast. The bacteria are 0.003mm long and divide every 30 min. Credit: Özden Baltekina, et al

The “fASTest” method is based on sensitive optical and analytical techniques developed to study the behaviour of individual bacteria. Monitoring whether individual bacteria grow in the presence of antibiotics (i.e. are resistant) reveals their or susceptibility within a few minutes.

“It’s great that…

Read the full article from the Source…

Leave a Reply

Your email address will not be published. Required fields are marked *